Volver a Guía

CURSO RELACIONADO

Matemática 51

2024 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
MATEMÁTICA 51 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 6 - Integrales

3. Calcular aplicando el método de integración por partes.
c) $\int x^{2} e^{-x} dx$

Respuesta

Elegimos \( f(x) = x^2 \) y \( g'(x) = e^{-x} \). Entonces, \( f'(x) = 2x \) y \( g(x) = -e^{-x} \).
Aplicamos la fórmula de integración por partes:
$ \int x^2 e^{-x} \, dx = x^2 (-e^{-x}) - \int 2x (-e^{-x}) \, dx $
$ = -x^2 e^{-x} + 2 \int x e^{-x} \, dx $

En el segundo termino no se puede resolver directamente y tenés que volver a aplicar por partes en \( \int x e^{-x} \, dx \) Ay qué emoción...🙄 jajaja:
Elegimos \( f(x) = x \) y \( g'(x) = e^{-x} \). Entonces, \( f'(x) = 1 \) y \( g(x) = -e^{-x} \).
$ \int x e^{-x} \, dx = x (-e^{-x}) - \int 1 (-e^{-x}) \, dx $
$ = -x e^{-x} + \int e^{-x} \, dx $
$ = -x e^{-x} - e^{-x}$
$ = -(x+1) e^{-x} $



Listo, ahora reemplazamos esta última integral en la anterior:
$ -x^2 e^{-x} + 2 \left[ -(x+1) e^{-x}] +C $


Fijate que el "+C" lo agregamos una vez que unímos toda la respuesta y ya está integrado todo, o sea lo hacés al final.




Listo!! Podés dejar el resultado así. O seguir operando para obtener otra expresión equivalente. Pero si en un examen llegaste hasta acá ¡está excelente!


$ -x^2 e^{-x} + 2 \left[ -(x+1) e^{-x}] +C$


Para seguir operando, distribuimos el 2:

$ = -x^2 e^{-x} - 2(x+1) e^{-x} + C $


Y ahora distribuimos el $2e^{-x} en (x+1)$ (sí, estoy operando en el segundo término)
$ = -x^2 e^{-x} - 2x e^{-x} - 2 e^{-x} + C $

Por lo tanto, la respuesta es:
$ \int x^2 e^{-x} \, dx = -x^2 e^{-x} - 2x e^{-x} - 2 e^{-x} + C $
Reportar problema
ExaComunidad
Iniciá sesión o Registrate para dejar tu comentario.
Fernando
25 de junio 20:02
2024-06-25%2020:01:48_4251478.png
por que el - de la formula pasa a +? 
Julieta
PROFE
9 de julio 15:45
@Fernando Hola Fer, porque el - que está en el paréntesis del $(-e^{-x})$ puede salir fuera de la integral como $-1$, y como ya hay un menos se multiplican. Por la regla de los singos te da positivo.
0 Responder
Benja
25 de junio 18:05
Hola juli, tengo una duda. ¿Por qué al integrar g’ al principio del ejercicio nos queda la misma exponencial pero negativa?
Julieta
PROFE
9 de julio 15:46
@Benja Hola Benja, eso es por la regla de la cadena. Integrá $e^{-x}$ y vas a ver que llegas a eso.
0 Responder